Счетное колесо леонардо да винчи год создания. Механическое развитие вычислительной техники

Историю механического этапа развития вычислительной техники можно начать вести с 1492 года, когда Леонардо да Винчи (1452-1519) разработал чертеж счетной машины и описал его в своих дневниках, ныне известных, как двухтомник «Мадридский Кодекс».

Среди чертежей первого тома «Мадридского кодекса», почти полностью посвященного прикладной механике, ученые обнаружили эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами.

Основу счетной машины составляли стержни с двумя зубчатыми колесами, большое - с одной стороны и маленькое - с другой. Как видно из эскиза Леонардо да Винчи, эти стержни располагались так, чтобы маленькое колесо на одном стержне входило в сцепление с большим колесом на соседнем стержне. Таким образом десять оборотов первого стержня приводили к одному полному обороту второго стержня, а десять оборотов второго - к одному полному обороту третьего стержня и так далее. Вся система состояла из тринадцати стержней и приводилась в движение набором грузов.

Вероятно, при жизни Леонардо да Винчи счетная машина не была создана.

Спустя почти 150 лет со дня изобретения счетной машины Леонардо да Винчи, в 1623 году в письме Иоганну Кеплеру немецкий профессор математики и астрономии Вильгельм Шикард (1592-1635) написал о машине, которая способна вычитать и складывать, а с помощью особых приспособлений на корпусе - еще и умножать, и приложил эскиз устройства. Это был шести разрядный механический калькулятор, получивший название «Вычисляющие часы». Устройство было названо часами, потому что его принцип работы основывался на использовании звёздочек и шестерёнок, как и в настоящих часах, а когда результат превышал резервы памяти, раздавался звон колокольчика.

Вычисляющие часы – первое механическая счетная машина, позволяющая складывать, вычитать, делить и умножать числа. Однако, она была известна довольно узкому кругу лиц, и поэтому долгое время (почти 300 лет со дня ее изобретения) первой счетной машиной считалось изобретение Блеза Паскаля (Пасклин).

История «вычисляющих часов» трагична. Два изготовленных экземпляра машины, один из которых предназначался Кеплеру, сгорели во время пожара. О самом проекте забыли на долгие годы, и чертежи устройства были утеряны из-за бушующей в тот период Тридцатилетней войны (1618-1648 гг), и только в 1935 году они были найдены. Найдены только для того, чтобы быть потерянными снова по причине второй мировой войны (1941-1945 гг).

И только спустя 21 год, в 1956 году в городской библиотеке Штутгарта была найдена фотокопия эскиза «вычисляющих часов», и в 1960 группа энтузиастов, на основе этой фотокопии и писем Шиккарда, сумели построить действующую модель «вычисляющих часов».

Начало развития технологий принято считать с Блеза Паскаля , который в 1642г. изобрел устройство, механически выполняющее сложение чисел ("Паскалин"). Его машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина выполняла суммирование чисел (восьмиразрядных) с помощью колес, которые при добавлении единицы поворачивались на 360 и приводили в движение, следующее по старшинству, колесо всякий раз, когда цифра 9 должна была перейти в значение 10. Машина Паскаля имела размеры 36х13х8 сантиметров. Этот небольшой латунный ящичек было удобно носить с собой. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц , высказавший в 1672 году идею механического умножения без последовательного сложения. Уже через год он представил машину, которая позволяла механически выполнять четыре арифметических действия, в Парижскую академию. Машина Лейбница требовала для установки специальный стол, так как имела внушительные размеры: 100х30х20 сантиметров.

Значительный вклад в развитие вычислительной техники внёс английский математик и изобретатель Чарльз Бэббидж . Идея построения «разностной машины» для вычисления навигационных, тригонометрических, логарифмических и других таблиц возникла у него в 1812 году. Название она получила из-за использования метода «конечных разностей». Свою первую разностную машину Бэббидж построил в 1822 году. Однако из-за нехватки средств эта машина не была закончена, и сдана в музей Королевского колледжа в Лондоне, где она хранится по сегодняшний день. Однако эта неудача не остановила Бэббиджа. Около 1833 года ему пришла в голову идея «аналитической машины», после чего он разностную машину практически похоронил, так как возможности новой машины значительно перекрывали возможности разностной, она выполняла вычисления без участия человека. Ч.Беббидж предложил так называемый принцип программного управления. Сущность его состоит в том, что вычислительная машина автоматически решает поставленную задачу, если в нее заранее вводится программа, определяющая последовательность выполняемых действий. В сконструированной им в 1834 г. «аналитической машине», эта программа задавалась в виде системы пробивок (перфораций) на соответствующих перфокартах. Такие перфокарты были впервые предложены в начале XIX в. англичанином Ж. Жаккардом для управления ткацким производством. Это был первый пример автоматизации средств производства.

Научные идеи Бэббиджа увлекли дочь известного английского поэта лорда Байрона- графиню Аду Августу Лавлейс . В то время еще не возникли такие понятия, как ЭВМ, программирование, и, тем не менее, Аду Лавлейс по праву считают первым в мире программистом. Дело в том, что Бэббидж не составил не одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский язык, и не просто перевела, а добавила собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи увеличился втрое, и Бэббидж получил возможность продемонстрировать мощь своей машины. Многими же понятиями, введенными Адой Лавлейс в описания тех первых в мире программ, широко пользуются современные программисты.

С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. К сожалению, он не смог довести до конца работу по созданию «аналитической машины» – она оказалась слишком сложной для техники того времени. После смерти Ч. Беббиджа Комитет Британской научной ассоциации, куда входили крупные ученые, рассмотрел вопрос, что делать с неоконченной аналитической машиной и для чего она может быть рекомендована. К чести Комитета было сказано: "...Возможности аналитической машины простираются так далеко, что их можно сравнить только с пределами человеческих возможностей... Успешная реализация машины может означать эпоху в истории вычислений, равную введению логарифмов". Но заслуга Бэббиджа в том, что он впервые предложил и частично реализовал идею программно-управляемых вычислений. Именно «аналитическая машина» по своей сути явилась прототипом современного компьютера и содержала:

ОЗУ на регистрах из колес (Бэббидж назвал его «store» - склад),

АЛУ – арифметико-логическое устройство («mill» - мельница),

Устройство управления и устройства ввода-вывода, последних было даже целых три: печать одной или двух копий (!), изготовление стереотипного отпечатка и пробивка на перфокартах. Перфокарты служили для ввода программ и данных в машину. ОЗУ имело емкость 1000 чисел по 50 десятичных знаков, то есть около 20 килобайт. Заслуги Бэббиджа и Лавлейс значительны: они стали провозвестниками компьютерной эры, наступившей только через 100 лет. В их честь назвали языки программирования – АДА и БЭББИДЖ.

Уроженец Эльзаса Карл Томас , основатель и директор двух парижских страховых обществ в 1818 году сконструировал счетную машину, уделив основное внимание технологичности механизма, и назвал ее арифмометром. Уже через три года в мастерских Томаса было изготовлено 16 арифмометров, а затем и еще больше. Таким образом, Томас положил начало счетному машиностроению. Его арифмометры выпускали в течение ста лет, постоянно совершенствуя и меняя время от времени названия.

Начиная с XIX века, арифмометры получили очень широкое применение. На них выполнялись даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала даже особая профессия – счетчик – человек, работающий с арифмометром, быстро и точно соблюдающий определенную последовательность инструкций (такую последовательность действий впоследствии стали называть программой). Но многие расчеты производились очень медленно, т.к. при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена. Первые арифмометры были дороги, ненадежны, сложны в ремонте и громоздки. Поэтому в России стали приспосабливать к более сложным вычислениям счеты. Например, в 1828 году генерал-майор Ф.М.Свободской выставил на обозрение оригинальный прибор, состоящий из множества счетов, соединенных в общей раме. Основным условием, позволявшим быстро вычислять, было строгое соблюдение небольшого числа единообразных правил. Все операции сводились к действиям сложения и вычитания. Таким образом, прибор воплощал в себе идею алгоритмичности.

Пожалуй, одно из последних, принципиальных изобретений в механической счетной технике было сделано жителем Петербурга Вильгодтом Однером . Построенный Однером в 1890 году арифмометр фактически ничем не отличается от современных подобных ему машин. Почти сразу Однер с компаньоном наладил и выпуск своих арифмометров - по 500 штук в год. К 1914 году в одной только России насчитывалось более 22 тысяч арифмометров Однера. В первой четверти XX века эти арифмометры были единственными математическими машинами, широко применявшимися в различных областях деятельности человека. Начиная с 1931 года, в СССР выпускается арифмометр ”Феликс”, один из вариантов арифмометра Однера. В России эти, громко лязгающие во время работы, машинки получили прозвище «Железный Феликс». Ими были оснащены практически все конторы.

Своего рода модификацию абака предложил Леонардо да Винчи (1452-1519) в конце XV - начале XVI века. Он создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Чертежи данного устройства были найдены среди двухтомного собрания Леонардо по механике, известного как "Codex Madrid". Это устройство что-то вроде счетной машинки в основе которой находятся стержни, с одной стороны меньшее с другой большее, все стержни (всего 13) должны были располагаться таким образом, чтобы меньшее на одном стержне касалось большего на другом. Десять оборотов первого колеса должны были приводить к одному полному обороту второго, 10 второго к одному полному третьего и т.д.

Конец работы -

Эта тема принадлежит разделу:

Ручной этап развития вычислительной техники

Развитие механики в xvii в стало предпосылкой создания вычислительных устройств и приборов использующих механический принцип вычислений такие.. комплекс холлерита машина.. машина поста..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ручной этап развития вычислительной техники
Ручной этап развития ВТ начался на заре человеческой цивилизации - он охватывает период от 50 тысячелетия до н.э. и до XVII века. Фиксация результатов счета у разных народов на разных континентах п

Машина Шиккарда
Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел. Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание

Машина Паскаля
Первая действующая модель счетной суммирующей машины была создана в 1642

Машина Бэббиджа
Аналитическая машина Бэббиджа представляла собой единый комплекс специализированных блоков. По проекту она включала следующие устройства. Первое - устройство для хранения исходных данных и промежут

Машина Лейбница
Машина, созданная Лейбницем в 1694 г., давала возможность механического в

Другие машины
Во второй половине XIX века появилось целое поколение механических счетных машин. Здесь и "вычислительный снаряд" Слонимского, и оригинальные счетные машины Фельта, Берроуза, Боле, и ариф

Электромеханический этап развития вычислительной техники
Как ни блестящ был век механических арифмометров, но и он исчерпал свои возможности. Людям нужны были более энергичные помощники. Это заставило изобретателей искать пути совершенствования вычислите

Машина Тьюринга
Алан Мэтисон Тьюринг - выдающийся английский математик, совершивший грандиозное открытие, которое положило начало компьютерной эре. В свои неполные 24 года он мысленно сконструировал абстрактный ме

Принцип работы
Машина Поста состоит из каретки (или считывающей и записывающей головки) и разбитой на секции ленты, считающейся условно бесконечной в обе стороны. В каждой клетке может быть записан символ из фикс

Этап электронно-вычислительных машин
С начала 1990-х годов термин "компьютер" вытеснил термин "электронная вычислительная машина" (ЭВМ), которое, в свою очередь, в 1960-х годах заменило понятие "цифровая вычис

Персональный компьютер
Персональный компьютер - компьютер, специально созданный для работы в однопользоват

Поколение эвм и суперкомпьютеры
Сейчас ведутся интенсивные разработки ЭВМ V поколения. Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования опт

Суперкомпьютеры
Однако мощности будут продолжать расти. Это необходимо для решения глобальных задач, таких как расчет аэродинамики автомобилей и свойств разнообразных наноструктур, ЗD-моделирование. ЭВМ, имеющие м

Устройство Леонардо да Винчи

Своего рода модификацию абака предложил Леонардо да Винчи (1452-1519) в конце XV - начале XVI века. Он создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Чертежи данного устройства были найдены среди двухтомного собрания Леонардо по механике, известного как "Codex Madrid". Это устройство что-то вроде счетной машинки в основе которой находятся стержни, с одной стороны меньшее с другой большее, все стержни (всего 13) должны были располагаться таким образом, чтобы меньшее на одном стержне касалось большего на другом. Десять оборотов первого колеса должны были приводить к одному полному обороту второго, 10 второго к одному полному третьего и т. д.

ЛЕОНАРДО ДА ВИНЧИ (Leonardo da Vinci) (15 апреля 1452, Винчи близ Флоренции - 2 мая 1519, замок Клу, близ Амбуаза, Турень, Франция), итальянский живописец, скульптор, архитектор, ученый, инженер.

Сочетая разработку новых средств художественного языка с теоретическими обобщениями, Леонардо да Винчи создал образ человека, отвечающий гуманистическим идеалам Высокого Возрождения. В росписи "Тайная вечеря " (1495-1497, в трапезной монастыря Санта-Мария делле Грацие в Милане) высокое этическое содержание выражено в строгих закономерностях композиции, ясной системе жестов и мимики персонажей. Гуманистический идеал женской красоты воплощен в портрете Моны Лизы ("Джоконда", около 1503). Многочисленные открытия, проекты, экспериментальные исследования в области математики, естественных наук, механики. Отстаивал решающее значение опыта в познании природы (записные книжки и рукописи, около 7 тысяч листов).


Леонардо родился в семье богатого нотариуса. Он сложился как мастер, обучаясь у Андреа дель Верроккьо в 1467-1472 годах. Методы работы во флорентийской мастерской того времени, где труд художника был тесно сопряжен с техническими экспериментами, а также знакомство с астрономом П. Тосканелли способствовали зарождению научных интересов юного Леонардо. В ранних произведениях (голова ангела в "Крещении" Верроккьо, после 1470, "Благовещение", около 1474, оба в Уффици, "Мадонна Бенуа", около 1478, Эрмитаж) обогащает традиции живописи кватроченто, подчеркивая плавную объемность форм мягкой светотенью, оживляя лица тонкой, едва уловимой улыбкой.

В "Поклонении волхвов" (1481-82, не закончена; подмалевок - в Уффици) превращает религиозный образ в зеркало разнообразных человеческих эмоций, разрабатывая новаторские методы рисунка. Фиксируя результаты бесчисленных наблюдений в набросках, эскизах и натурных штудиях (итальянский карандаш, серебряный карандаш, сангина, перо и другие техники), Леонардо добивается редкой остроты в передаче мимики лица (прибегая порой к гротеску и карикатуре), а строение и движения человеческого тела приводит в идеальное соответствие с драматургией композиции.

На службе у правителя Милана Лодовико Моро (с 1481) Леонардо выступает в роли военного инженера, гидротехника, организатора придворных празднеств. Свыше 10 лет он работает над монументом Франческо Сфорца, отца Лодовико Моро; исполненная пластической мощи глиняная модель памятника в натуральную величину не сохранилась (разрушена при взятии Милана французами в 1500) и известна лишь по подготовительным наброскам.

На этот период приходится творческий расцвет Леонардо-живописца. В "Мадонне в скалах" (1483-94, Лувр; второй вариант - 1487-1511, Национальная галерея, Лондон) излюбленная мастером тончайшая светотень ("сфумато") предстает новым ореолом, который идет на смену средневековым нимбам: это в равной мере и божественно-человеческое, и природное таинство, где скалистый грот, отражая геологические наблюдения Леонардо, играет не меньшую драматическую роль, чем фигуры святых на переднем плане.

"Тайная вечеря"

В трапезной монастыря Санта-Мария делле Грацие Леонардо создает роспись "Тайная вечеря" (1495-97; из-за рискованного эксперимента, на который пошел мастер, применив для фрески масло в смеси с темперой, работа дошла до нас в весьма поврежденном виде). Высокое религиозно-этическое содержание образа, где представлена бурная, разноречивая реакция учеников Христа на его слова о грядущем предательстве, выражено в четких математических закономерностях композиции, властно подчиняющей себе не только нарисованное, но и реальное архитектурное пространство. Ясная сценическая логика мимики и жестов, а также волнующе-парадоксальное, как всегда у Леонардо, сочетание строгой рациональности с неизъяснимой тайной сделали "Тайную вечерю" одним из самых значительных произведений в истории мирового искусства.

Занимаясь также архитектурой, Леонардо разрабатывает различные варианты "идеального города" и центрально-купольного храма. Последующие годы мастер проводит в непрестанных переездах (Флоренция - 1500-02, 1503-06, 1507; Мантуя и Венеция - 1500; Милан - 1506, 1507-13; Рим - 1513-16). С 1517 живет во Франции, куда был приглашен королем Франциском I.


"Битва при Ангьяри". Джоконда (Портрет Моны Лизы)

Во Флоренции Леонардо работает над росписью в Палаццо Веккьо ("Битва при Ангьяри", 1503-1506; не закончена и не сохранилась, известна по копиям с картона, а также по недавно обнаруженному эскизу - частное собрание, Япония), которая стоит у истоков батального жанра в искусстве нового времени; смертельная ярость войны воплощена тут в исступленной схватке всадников.

В наиболее известной картине Леонардо, портрете Моны Лизы (так называемой "Джоконды", около 1503, Лувр) образ богатой горожанки предстает таинственным олицетворением природы как таковой, не теряя при этом чисто женского лукавства; внутреннюю значительность композиции придает космически-величавый и в то же время тревожно-отчужденный пейзаж, тающий в холодной дымке.

Поздние картины

К поздним произведениям Леонардо принадлежат: проекты памятника маршалу Тривульцио (1508-1512), роспись "Святая Анна с Марией и младенцем Христом" (около 1500-1507, Лувр). В последней как бы подводится итог его поискам в области свето-воздушной перспективы, тонального колорита (с преобладанием прохладных, зеленоватых оттенков) и гармонической пирамидальной композиции; вместе с тем это гармония над бездной, поскольку группа святых персонажей, спаянных семейной близостью, представлена на краю пропасти. Последняя картина Леонардо, "Святой Иоанн Креститель" (около 1515-1517, там же) полна эротической двусмысленности: юный Предтеча выглядит тут не как святой аскет, но как полный чувственной прелести искуситель. В серии рисунков с изображением вселенской катастрофы (цикл с "Потопом", итальянский карандаш, перо, около 1514-1516, Королевская библиотека, Виндзор) раздумья о бренности и ничтожестве человека перед могуществом стихий сочетаются с рационалистическими, предвосхищающими "вихревую " космологию Р. Декарта представлениями о цикличности природных процессов.

"Трактат о живописи"

Важнейшим источником для изучения воззрений Леонардо да Винчи служат его записные книжки и рукописи (около 7 тысяч листов), написанные на разговорном итальянском языке . Сам мастер не оставил систематического изложения своих мыслей. "Трактат о живописи", подготовленный после смерти Леонардо его учеником Ф. Мельци и оказавший огромное влияние на теорию искусства, состоит из отрывков, во многом произвольно извлеченных из контекста его записок. Для самого Леонардо искусство и наука были связаны неразрывно. Отдавая в "споре искусств" пальму первенства живописи как наиболее интеллектуальному, по его убеждениям, виду творчества, мастер понимал ее как универсальный язык (подобный математике в сфере наук), который воплощает все многообразие мироздания посредством пропорций, перспективы и светотени. "Живопись, - пишет Леонардо, - наука и законная дочь природы..., родственница Бога". Изучая природу, совершенный художник-естествоиспытатель тем самым познает "божественный ум", скрытый под внешним обликом натуры. Вовлекаясь в творческое соревнование с этим божественно-разумным началом, художник тем самым утверждает свое подобие верховному Творцу. Поскольку он "имеет сначала в душе, а затем в руках" "все, что существует во вселенной", он тоже есть "некий бог".

Леонардо - ученый. Технические проекты

Как ученый и инженер Леонардо да Винчи обогатил проницательными наблюдениями и догадками почти все области знания того времени, рассматривая свои заметки и рисунки как наброски к гигантской натурфилософской энциклопедии. Он был ярким представителем нового, основанного на эксперименте естествознания. Особое внимание Леонардо уделял механике, называя ее "раем математических наук" и видя в ней ключ к тайнам мироздания; он попытался определить коэффициенты трения скольжения, изучал сопротивление материалов, увлеченно занимался гидравликой. Многочисленные гидротехнические эксперименты получили выражение в новаторских проектах каналов и ирригационных систем. Страсть к моделированию приводила Леонардо к поразительным техническим предвидениям, намного опережавшим эпоху: таковы наброски проектов металлургических печей и прокатных станов, ткацких станков, печатных, деревообрабатывающих и прочих машин, подводной лодки и танка, а также разработанные после тщательного изучения полета птиц конструкции летальных аппаратов и парашюта.

Собранные Леонардо наблюдения над влиянием прозрачных и полупрозрачных тел на окраску предметов, отраженные в его живописи, привели к утверждению в искусстве принципов воздушной перспективы. Универсальность оптических законов была связана для него с представлением об однородности Вселенной. Он был близок к созданию гелиоцентрической системы, считая Землю "точкой в мироздании". Изучал устройство человеческого глаза, высказав догадки о природе бинокулярного зрения.

Анатомия, ботаника, палеонтология

В анатомических исследованиях, обобщив результаты вскрытий трупов, в детализированных рисунках заложил основы современной научной иллюстрации. Изучая функции органов, рассматривал организм как образец "природной механики". Впервые описал ряд костей и нервов, особое внимание уделял проблемам эмбриологии и сравнительной анатомии, стремясь ввести экспериментальный метод и в биологию. Утвердив ботанику как самостоятельную дисциплину, дал классические описания листорасположения, гелио - и геотропизма, корневого давления и движения соков растений. Явился одним из основоположников палеонтологии, считая, что окаменелости, находимые на вершинах гор, опровергают представления о "всемирном потопе".

Явив собою идеал ренессансного "универсального человека", Леонардо да Винчи осмыслялся в последующей традиции как личность, наиболее ярко очертившая диапазон творческих исканий эпохи. В русской литературе портрет Леонардо создан в романе "Воскрешенные боги" (1899-1900)

Счетная машина Леонардо да Винчи

Историю механического этапа развития вычислительной техники можно начать вести с 1492 года, когда Леонардо да Винчи (1452-1519) разработал чертеж счетной машины и описал его в своих дневниках, ныне известных, как двухтомник «Мадридский Кодекс». Долгое время эти дневники пролежали в безызвестности в национальной Библиотеке Испании, пока 13-го февраля 1967 года не были найдены американскими исследователями.

Среди чертежей первого тома «Мадридского кодекса», почти полностью посвященного прикладной механике, ученые обнаружили эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами.

Основу счетной машины составляли стержни с двумя зубчатыми колесами, большое - с одной стороны и маленькое - с другой. Как видно из эскиза Леонардо да Винчи, эти стержни располагались так, чтобы маленькое колесо на одном стержне входило в сцепление с большим колесом на соседнем стержне. Таким образом десять оборотов первого стержня приводили к одному полному обороту второго стержня, а десять оборотов второго - к одному полному обороту третьего стержня и так далее. Вся система состояла из тринадцати стержней и приводилась в движение набором грузов.

Вероятно, при жизни Леонардо да Винчи счетная машина не была создана. Однако, в 1967 году доктор Роберто Гуателли, известный эксперт по Леонардо да Винчи, работающий по приглашению фирмы IBM с 1951 года над воссозданием машин великого мастера, исследуя эскизы счетной машины в «Мадридском кодексе», вспомнил, что видел подобный рисунок в "Атлантическом Кодексе".

Изучив оба рисунка, доктор Гуателли создал в 1968 году копию счетной машины. Модель поддерживала постоянное отношение десяти к одному в каждом из его 13 цифровых колес. После полного оборота первой ручки, колесо единиц немного поворачивалось, чтобы отметить новую цифру в пределах от ноля до девяти.

В соответствии с пропорцией десять к одному, десятый оборот первой ручки заставляет колесо единиц совершить полный оборот и стать на ноль, который в свою очередь сдвигает колесо десятков с ноля на единицу. Каждое последующее колесо, отмечающее сотни, тысячи и т.д., действует подобным же образом.

По сравнению с оригинальным эскизом Леонардо были внесены небольшие улучшения, чтобы дать зрителю более ясную картину того, как каждое из этих 13 колес может двигаться независимо и все же поддерживать пропорцию десять к одному.

Однако, в течение года относительно точности воспроизведения счетной машины появлялись возражения, и для установки подлинности механизма в университете Штата Массачусетс были проведены Академические испытания.

Оппоненты считали, что на эскизах Леонарда да Винчи изображен механизм пропорционирования, а не счетная машина, и один оборот первой оси вызывает 10 оборотов второй, 100 оборотов третьей и 10 в 13 - ой степени оборотов последней оси. Работа такого механизма, по мнению противников доктора Гуателли, не могла осуществляться из-за огромной силы трения, которую необходимо преодолевать для оборота всех стержней.


«Основы Windows» - Панель задач. Папка может быть пустой. Ярлыки (Shortcuts). Основные объекты. Основы работы с операционной системой WINDOWS. Окно документа. Окно приложения. Основные средства управления – графический манипулятор (мышь или иной аналогичный) и клавиатура. Папки. Основные понятия. Значки – графическое представление объекта.

«Блок-схема» - Язык блок - схем. Основные блоки. Вычисление площади поверхности фигуры по формуле: S=2al+a2.(a=3,l=2). Составьте алгоритм вычисления выражения у=2х+в, х=5, в=5. Язык блок – схем является одним из способов символической записи алгоритмов. Внутри блока дается описание соответствующего действия. Составьте алгоритм для вычисления выражения (а+d(n-1))n/2=y при a=10,d=2,n=3.

«Файлы и папки» - Значки и Ярлыки. COM, EXE - выполняемые файлы. Рабочий стол – рабочая поверхность экрана, главная папка в Windows. Шаблон (маска) файла. Значок программы EXCEL. Ярлык служит для ускорения запуска программ или документов. Корневой каталог. Значок (иконка) обычной папки в windows. Файл - текст или совокупность данных с уникальным именем, хранящиеся на диске.

«Устройства вывода информации» - Качество изображения определяется разрешающей способностью монитора. Качество изображения определяется количеством точек, из которых оно складывается. Чем больше разрешающая способность монитора, тем выше качество изображения. Устройства вывода информации. Лазерные принтеры. Недостатки струйных принтеров: Большой расход чернил; Высокая стоимость заправки.

«Файл и файловая система» - Иерархическая файловая система. Придумай имя графического файла, в котором будет содержаться рисунок твоего дома. Файл и файловая система. Характеристики файла, наделяющие файл определенными свойствами. Каталог содержит имя файла и указание на начало его размещения на диске. Придумай имя текстового файла, в котором будет содержаться информация о твоем доме.

«Информационные процессы» - Информационные процессы в науке. Посмотрев новости, я также получаю информацию. Информационные революции. Характеристики индустриального общества. Внедрение последних достижений научно – технической мысли: изобретений, идей, предложений. Иформационный процесс – процесс, в результате которого осуществляется прием, передача информации.

Всего в теме 44 презентации