Действие в блок схемах алгоритма представляет собой. Что такое блок-схема

Вам понадобится

  • - трафарет для черчения блок-схем;
  • - механический карандаш;
  • - ластик;
  • - бумага;
  • - компьютер с доступом в интернет.

Инструкция

Начало и конец алгоритма обозначаются овалами. Внутри них помещают, соответственно, слова «Начало» и «Конец». От овала, символизирующего начало алгоритма, исходит одна стрелка вниз, к , символизирующему конец алгоритма, приходит стрелка сверху.

Шаги, соответствующие действиям, не связанным с вводом-выводом, обозначаются при помощи прямоугольников. Пример такого действия - вычисление и присвоение результата той или иной переменной. Стрелка от предыдущего шага приходит к прямоугольнику сверху, а снизу от него исходит стрелка к следующему шагу.

Для обозначения шагов, соответствующих операциям ввода-вывода, используются параллелограммы. Такие операции бывают двух видов: присвоение поступивших откуда-либо данных переменной и вывод данных из переменной в файл, порт, на , принтер и т.п.

Ветвления обозначаются ромбами. В верхний угол ромба приходит стрелка от предыдущего шага, а из его боковых углов исходят стрелки, как «Нет» и «Да». Они приходят, соответственно, к шагам, выполняемым при несоблюдении и соблюдении условия. Нижний угол ромба оставляется свободным. Само (например, равенство, строгое или нестрогое) записывается внутри ромба.

Прямоугольник, боковые стенки которого двойные, олицетворяет переход к подпрограмме. После того как в подпрограмме встретился оператор возврата, продолжается выполнение основной программы. Внутри прямоугольника указывается название подпрограммы. Блок-схемы всех подпрограмм помещаются под блок-схемой основной программы либо на отдельных страницах.

Чертить блок-схемы удобнее всего через специальные трафареты, пользуясь механическим карандашом. Его можно стирать ластиком, аналогично обычному карандашу, но не требуется точить.

Если вы желаете составлять блок-схемы в электронном виде, воспользуйтесь онлайн-приложением под названием Flowchart. При желании можно также освоить особые языки программирования, в которых сам процесс программирования заключается в составлении блок-схемы. Таких языков два: Дракон и HiAsm.

Источники:

  • как начертить блок схему

Первое и самое главное умение программиста - составить алгоритм. Знание языка это уже второе дело, их выбор - практически дело вкуса. А вот основы алгоритмизации едины всегда.

Инструкция

Изучите основные элементы и обозначения в алгоритме. Сначала вам может показаться это сложным и неуместным, однако, как только вам понадобится написать что-то действительно объёмное и комплексное, вы сами почувствуете, что канонично изображенный алгоритм легко . Прямоугольником формирование данных и новый процесс, ввод данных – параллелограммом, а ромбом – условие. Цикл начинается шестиугольником, использование подпрограммы – прямоугольником с дополнительными полосами сбоку. Начало и конец – круг. Вывод полученных значений – «оборванный лист», прямоугольник с нижней стороной в форме волны.

Сокращайте! Главным требованием к любому алгоритму является его простота. Чем меньше элементов в вашей конструкции, тем надежнее она будет работать. Более того, приучите себя к тому, что после изначального варианта, наверняка можно будет исключить из него 2-3 лишних шага. Попытайтесь «взять себя на слабо», и воспринимайте процесс сокращения алгоритма как некий вызов, а не раздражитель. Помните – чем короче все выглядит в , тем проще будет программы.

Предпочитайте «отсев» «развилке». Гораздо более удобным с точки зрения программного кода, как правило, является проверка условий. Иными словами, стремитесь к более «прямой» структуре, а не разветвленной. Классическим примером послужит алгоритм задачи «определить четверть плоскости, в которой находится точка, по координатам». В данном случае лучше окажется алгоритм, составленный из условий: «x>0, y>0 –данет», «x<0, y>0 –данет», и т.д. Менее удобным окажется вариант: «если x>0, то…», на большинстве языков он потребует больше шагов для выполнения.

Внимательно изучите доступные библиотеки. Многие начинающие программисты грешат тем, что не знают основных команд даже встроенных библиотек, из-за чего им постоянно приходится изобретать велосипед. Вполне возможно (особенно при работе с текстом, для него существует огромный запас различных команд) что некоторое действие (к примеру сравнение длинны строк) может быть выполнено стандартной подпрограммой. Это сразу исключает 5-7 лишних шагов из вашего алгоритма.

Видео по теме

Обратите внимание

Пишите алгоритм на бумаге. Из-за обилия геометрических фигур это просто удобнее.

Спросите 2-3 человека как бы они решмили поставленную задачу. Вполне возможно вам покажут кардинально иной подход.

Полезный совет

Алгоритм изображается сверху вниз.

Алгоритмирование - наука о создании алгоритмов и процессов, важнейшая компонента структурного программирования. Без алгоритмов не обойдется составление бизнес-плана, разработка приложения для мобильного или компьютерной игры. Умение создавать алгоритмы позволяет делать многие вещи многократно, с минимумом усилий, в автоматическом режиме.

Инструкция

Впервые слово «алгоритм» употребил один из создателей современной алгебры, мудрец и астроном Аль-Хорезми еще в 224 году н.э. в своих фундаментальных трудах. В его понимании алгоритм -

Мастер – класс по информатике

Тема «Создание блок-схем»

Ход мастер – класса.

Здравствуйте уважаемые коллеги. Меня зовут Федорова Юлия Николаевна. Сегодня я хочу вас научить создавать блок-схемы.

Блок схема является одной из форм записи алгоритма наряду со словесной и записью на языке программирования.

Словесная форма записи алгоритма наверное знакома всем.

Возьмем, к примеру, словесный алгоритм приготовления теста для выпечки коржа или печенья. (Размягчить 200 г маргарина, влить пол стакана воды, добавить 3 стакана муки , перемешать, чтобы не было комков , положить в холод на 30 минут. )

Для более наглядного представления алгоритма широко используется графическая форма- т.е блок схема.

В отличие от словесной блок-схема является более компактной и наглядной

Итак посмотрим определение на слайде

Блок – схема алгоритма – изображение алгоритма в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

В схеме алгоритма каждому типу действий соответствует геометрическая фигура. Фигуры соединяются линиями переходов, определяющими очередность выполнения действий.

Стрелки, связывают эти фигуры и задают порядок выполнения соответствующих шагов.

Но линейные алгоритмы встречаются в этой жизни очень редко.

Мы очень часто встречаем повторяющиеся действия или события, например: смена времени года, смена дня и ночи. Повторяющаяся последовательность действий называется циклом.

Алгоритмы, содержащие повторяющиеся действия, называются циклическими.

Часто возникает условие, которое надо либо выполнять, либо нет. Тогда порядок выполнения действий будет зависеть от выполнения некоторого условия. И появляется еще одна графическая структура.

Алгоритмы, в которых осуществляется выбор действий в зависимости от какого-то условия, называются разветвляющимися.

В зависимости от условия выбираем то или иное решение, но чтобы оно привело к положительному результату. Пример на слайде.


Итак самой распространенной и простой является блок-схема разветвляющего алгоритма, т.е та где есть условие

И чтобы в этом убедится я предлагаю коллегам самим составить блок-схему и прочитать ее, проявив свою фантазию.

Дается задание фокус-группам.

Если вещество проводит ток, то это проводник, если нет то это изолятор.

Задайте вопрос к глаголу. Если есть мягкий знак в вопросе, значит пишем –ТЬСЯ с мягким знаком, если нет, то пишем –ТСЯ без мягкого знака.

Пока работают фокус-группы, я работаю с аудиторией зала.

«…Чтоб тебя на земле не теряли,
Постарайся себя не терять!»

Хорошая тематика классного часа в 11 классе.

Вывод: такие блок-схемы можно составлять по любому предмету, идет осмысление текста, наглядное представление информации, компактность материала, применение в дальнейшем (правила по русскому языку, математики).

Составляя блок-схемы учащиеся рассуждают и приходят к конечному результату. Они сами принимают решения и аргументируют свой выбор, не боятся делать ошибки и творчески подходят к выполнению задания.

Такой прием составляет реальную основу для формирования самостоятельности. А также работа с алгоритмом а следовательно и построение блок-схем является одним из этапов работы над проектом, что ведет к развитию ключевых компетентностей.

Кто из вас знаком с блок-схемами повторили, ведь новое хорошо забытое старое, кто услышал это впервые я надеюсь, что вы это примените в своей педагогической деятельности и получите положительный результат.

В заключение хочу сказать, что вся наша жизнь – это алгоритм сложной структуры. Я желаю, чтобы каждое ваше действие было обдуманным, правильно выбранным и приводило к правильному, достойному результату!

Блок-схемой будем называть такое графическое представление алгоритма, когда отдельные действия (или команды) представляются в виде геометрических фигур – блоков . Внутри блоков указывается информация о действиях, подлежащих выполнению. Связь между блоками изображают с помощью линий, называемых линиями связи , обозначающих передачу управления.

Существует Государственный стандарт, определяющий правила создания блок-схем. Конфигурация блоков, а также порядок графического оформления блок-схем регламентированы ГОСТ 19.701-90 "Схемы алгоритмов и программ". В табл. 2.1 приведены обозначения некоторых элементов, которых будет вполне достаточно для изображения алгоритмов при выполнении студенческих работ.

Правила составления блок-схем:

    Каждая блок-схема должна иметь блок «Начало » и один блок «Конец ».

    «Начало » должно быть соединено с блоком «Конец » линиями потока по каждой из имеющихся на блок-схеме ветвей.

    В блок-схеме не должно быть блоков, кроме блока «Конец », из которых не выходит линия потока, равно как и блоков, из которых управление передается «в никуда».

    Блоки должны быть пронумерованы. Нумерация блоков осуществляется сверху вниз и слева направо, номер блока ставится вверху слева, в разрыве его начертания.

    Блоки связываются между собой линиями потока, определяющими последовательность выполнения блоков. Линии потоков должны идти параллельно границам листа. Если линии идут справа налево или снизу вверх , то стрелки в конце линии обязательны , в противном случае их можно не ставить.

    По отношению к блокам линии могут быть входящими и выходящими . Одна и та же линия потока является выходящей для одного блока и входящей для другого.

    От блока «Начало » в отличие от всех остальных блоков линия потока только выходит, так как этот блок – первый в блок-схеме.

    Блок «Конец » имеет только вход, так как это последний блок в блок-схеме.

    Для простоты чтения желательно, чтобы линия потока входила в блок «Процесс» сверху, а выходила снизу.

    Чтобы не загромождать блок-схему сложными пересекающимися линиями, линии потока можно разрывать. При этом в месте разрыва ставятся соединители , внутри которых указываются номера соединяемых блоков. В блок-схеме не должно быть разрывов, не помеченных соединителями.

    Чтобы не загромождать блок, можно информацию о данных, об обозначениях переменных и т.п. размещать в комментариях к блоку.

Название блока

Обозначение блока

Назначение блока

Терминатор

Начало/Конец программы или подпрограммы

Обработка данных (вычислительное действие или последовательность вычислительных действий)

Ветвление, выбор, проверка условия. В блоке указывается условие или вопрос, который определяет дальнейшее направление выполнения алгоритма

Подготовка

Заголовок счетного цикла

Предопределенный процесс

Обращение к процедуре

Ввод/Вывод данных


Типы алгоритмов

Тип алгоритма определяется характером решаемой в соответствии с его командами задачи. Различают три типа алгоритмов: линейные, разветвляющиеся, циклические.

Линейный алгоритм состоит из упорядоченной последовательности действий, не зависящей от значений исходных данных, при этом каждая команда выполняется только один раз строго после той команды, которая ей предшествует.

Таким, например, является алгоритм вычисления по простейшим безальтернативным формулам, не имеющий ограничений на значения входящих в эти формулы переменных. Как правило, линейные процессы являются составной частью более сложного алгоритма.

Разветвляющимися называются алгоритмы, в которых в зависимости от значения какого-то выражения или от выполнения некоторого логического условия дальнейшие действия могут производиться по одному из нескольких направлений.

Каждое из возможных направлений дальнейших действий называется ветвью .

В блок-схемах разветвление реализуется специальным блоком «Решение» . Этот блок предусматривает возможность двух выходов. В самом блоке «Решение» записывается логическое условие, от выполнения которого зависят дальнейшие действия.

Различают несколько видов разветвляющихся алгоритмов.

1. «Обход» – такое разветвление, когда одна из ветвей не содержит ни одного оператора, т.е. как бы обходит несколько действий другой ветви.

2. «Разветвление» – такой тип разветвления, когда в каждой из ветвей содержится некоторый набор действий.

3. «Множественный выбор» – особый тип разветвления, когда каждая из нескольких ветвей содержит некоторый набор действий. Выбор направления зависит от значения некоторого выражения.

Циклические алгоритмы применяются в тех случаях, когда требуется реализовать многократно повторяющиеся однотипные вычисления. Цикл – это последовательность действий, которая может выполняться многократно, т.е. более одного раза.

Различают:

      циклы с известным числом повторений (или со счетчиком);

      циклы с неизвестным числом повторений (циклы с предусловием и циклы с постусловием).

В любом цикле должна быть переменная, которая управляет выходом из цикла, т.е. определяет число повторений цикла.

Последовательность действий, которая должна выполняться на каждом шаге цикла (т.е. при каждом повторении цикла), называется телом цикла или рабочей частью цикла .

31.01.2019 17.09.2019 Learnpascal

Итак, опустив долгие и нудные восхваления Паскаля, которые так любят публиковать в своих статьях редакторы многих сайтов, приступим непосредственно к самому основному – к программированию.

В школах, как правило, изучение Паскаля начинают с решения простейших задач путем составления различных алгоритмов или блок-схем, которое многие так часто игнорируют, считая никому не нужной ерундой. А зря. Я, как и любой другой человек, хоть немного соображающий в программировании (не важно где – в Паскале, Си, Дельфи), могу уверить Вас – умение правильно и быстро составлять схемы является фундаментом, основой программирования.

Блок-схема - графическое представление алгоритма. Она состоит из функциональных блоков, которые выполняют различные назначения (ввод/вывод, начало/конец, вызов функции и т.д.).

Существует несколько основных видов блоков, которые нетрудно запомнить:

Сегодняшний урок я решила посвятить не только изучению блок-схем, но также и изучению линейных алгоритмов. Как Вы помните, линейный алгоритм - наипростейший вид алгоритма. Его главная особенность в том, что он не содержит никаких особенностей. Как раз это и делает работу с ним простой и приятной.

Данная задача не должна представлять особой трудности, так как построена она на хорошо известных всем нам формулах расчета площади и периметра прямоугольника, поэтому зацикливаться на выведении этих формул мы не будем.

Составим алгоритм решения подобных задач:

1) Прочитать задачу.
2) Выписать известные и неизвестные нам переменные в «дано». (В задаче №1 к известным переменным относятся стороны: a, b ;к неизвестным - площадь S и периметр P)
3) Вспомнить либо составить необходимые формулы. (У нас: S=a*b; P=2*(a+b))
4) Составить блок-схему.
5) Записать решение на языке программирования Pascal.

Запишем условие в более кратком виде.

Найти: S, P

Решение задачи №1

Структура программы, решающей данную задачу, тоже проста:

  • 1) Описание переменных;
  • 2) Ввод значений сторон прямоугольника;
  • 3) Расчет площади прямоугольника;
  • 4) Расчет периметра прямоугольника;
  • 5) Вывод значений площади и периметра;
  • 6) Конец.

А вот и решение:

Program Rectangle; Var a, b, S, P: integer; Begin write("Введите стороны прямоугольника!"); readln(a, b); S:=a*b; P:=2*(a+b); writeln("Площадь прямоугольника: ", S); write("Периметр прямоугольника: ", P); End.

Задача №2: Скорость первого автомобиля - V1 км/ч, второго – V2 км/ч, расстояние между ними S км. Какое расстояние будет между ними через T часов, если автомобили движутся в разные стороны? Значения V1, V2, T и S задаются с клавиатуры.

Решение осуществляем, опять же, следуя алгоритму. Прочитав текст, мы переходим к следующему пункту. Как и во всех физических или математических задачах, это запись условий задачи:

Дано: V1, V2, S, Т
Найти: S1

Далее идет самая главная и в то же время самая интересная часть нашего решения – составление нужных нам формул. Как правило, на начальных стадиях обучения все необходимые формулы хорошо нам известны и взяты из других технических дисциплин (например, на нахождение площади различных фигур, на нахождение скорости, расстояния и т.п.).

Формула, используемая для решения нашей задачи, выглядит следующим образом:

Следующий пункт алгоритма – блок-схема:

Решение задачи №2.

А также решение, записанное в Pascal:

Program Rasstoyanie; Var V1, V2, S, T, S1: integer; {Ввод } begin write("Введите скорость первого автомобиля: "); readln(V1); write("Введите скорость второго автомобиля: "); readln(V2); write("Введите время: "); readln(T); write("Введите расстояние между автомобилями: "); readln(S); S1:=(V1+V2)*T+S; writeln("Через ", t,"ч. расстояние ", S1," км."); End.

Вам может показаться, что две эти программы правильны, но это не так. Ведь сторона треугольника может быть 4.5, а не 4, а скорость машины не обязательно круглое число! А Integer - это только целые числа. Поэтому при попытке написать во второй программе другие числа выскакивает ошибка:


Обратите внимание в Паскале, как и в любом другом языке программирования десятичная дробь вводится с точкой, а не с запятой!

Чтобы решить эту проблему вам надо вспомнить какой тип в Pascal отвечает за нецелые числа. В мы рассматривали основные типы. Итак, это вещественный тип - Real. Вот, как выглядит исправленная программа:

Как видите, эта статья полезна для прочтения как новичкам, так и уже более опытными пользователям Pascal, так как составление блок-схем не только очень простое и быстрое, но и весьма увлекательное занятие.

Блок-схемы - это схемы, на которых показаны этапы процесса. Простые блок-схемы легко создавать, а благодаря простоте и наглядности фигур они также удобны для восприятия.

Примечание. Вы также можете автоматически создать простую блок-схему на основе данных, используя визуализатор данных в Visio. Дополнительные сведения см. в статье Создание схем с помощью визуализатора данных .

Шаблон "Простая блок-схема" в Visio содержит фигуры, которые можно использовать для наглядного представления разнообразных процессов. Он особенно полезен для отображения простых бизнес-процессов, таких как процесс разработки предложения, показанный на рисунке ниже.

В дополнение к шаблону "Простая блок-схема" в Visio доступны различные шаблоны схем более узкого назначения, таких как схемы потоков данных, временные шкалы и модели программного обеспечения.

Создание блок-схемы

    Запустите приложение Visio.

    Дважды щелкните значок Простая блок-схема .

    Чтобы соединить элементы блок-схемы, наведите указатель мыши на первую фигуру, и щелкните стрелку, указывающую на фигуру, с которой требуется создать соединение. Если вторая фигура находится не рядом с первой, необходимо перетащить маленькую стрелку к центру второй фигуры.

    Чтобы изменить направление стрелки соединительной линии, выберите соединение, а затем на вкладке в группе Стили фигур щелкните пункт Линия Стрелки и выберите нужное направление и вид стрелки.

Автоматическое выравнивание и интервалы

    Нажмите сочетание клавиш CTRL+A, чтобы выбрать все объекты на странице.

    На вкладке Главная в группе Упорядочение нажмите кнопку Положение и выберите пункт Автовыравнивание и определение интервалов .

Если это не привело к нужному результату, отмените ее, нажав сочетание клавиш CTRL+Z, и воспользуйтесь другими параметрами меню кнопок Выравнивание и Положение .

Что представляют блок-схемы

При открытии шаблона Простая блок-схема открывается набор элементов Фигуры простой блок-схемы . Каждая фигура в этом наборе представляет собой тот или иной этап процесса. Но фигуры не имеют какого-то универсального смысла, их значение определяется создателями и пользователями блок-схем. В большинстве блок-схем используется три или четыре вида фигур, и этот диапазон расширяется только по специфической необходимости.

При этом названия фигур в Visio указывают на их применение. Ниже описаны наиболее распространенные фигуры.

Что представляют блок-схемы

В Visio 2010 есть множество других, специализированных наборов элементов и фигур, которые можно использовать в блок-схеме. Дополнительные сведения о других фигурах см. в статье .

Примечание: Не удается найти нужную фигуру? Дополнительные сведения о том, как найти другие фигуры, см. в статье Упорядочение и поиск фигур с помощью окна "Фигуры" .

Создание блок-схемы

    Откройте вкладку Файл .

    Вкладка Файл не отображается

    Если вкладка Файл не отображается, перейдите к следующему шагу процедуры.

    Выберите команду Создать и пункт Блок-схема , а затем в списке Доступные шаблоны выберите элемент Простая блок-схема .

    Нажмите кнопку Создать .

    Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

    Примечание: Сведения об использовании фигур для представления каждого шага процесса см. в разделе .

    По умолчанию используются прямоугольные

    Прямые соединительные линии

    Для возврата к обычному редактированию на вкладке Главная в группе Сервис нажмите кнопку Указатель .

    Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

    Чтобы изменить направление стрелки соединительной линии, выберите соединение, а затем в группе щелкните стрелку справа от надписи Линия , наведите указатель на пункт Стрелки и выберите нужное направление.

Печать большой блок-схемы

Перед началом печати нужно убедиться в том, что отображаемая в Visio страница документа содержит блок-схему полностью. Все фигуры, которые выходят за пределы страницы в Visio, не будут напечатаны.

Чтобы распечатать большую блок-схему, сделайте следующее:

Что представляют блок-схемы

Когда вы открываете шаблон "Простая блок-схема", также открывается набор элементов "Фигуры простой блок-схемы". Каждая фигура в наборе элементов соответствует конкретному шагу процесса.

Из фигур, входящих в набор элементов "Фигуры простой блок-схемы", широко используются только некоторые. Именно эти фигуры описаны ниже. Дополнительные сведения об остальных фигурах см. по ссылке (Менее популярные фигуры блок-схемы) в конце этого раздела.

Менее популярные фигуры блок-схемы

    Динамическая соединительная линия. Эта соединительная линия проходит в обход фигур, лежащих на ее пути.

    Это соединительная линия с настраиваемой кривизной.

    Это текстовое поле с рамкой, размер которого изменяется в зависимости от объема введенного текста. Ширину можно задать, перетащив боковые стороны фигуры. Эта фигура не представляет этап процесса, но ее удобно использовать для размещения надписей на блок-схеме.

    Примечание. Это поле в квадратных скобках, размер которого изменяется в зависимости от объема введенного текста. Ширину можно задать, перетащив боковые стороны фигуры. Как и "Поле с автоподбором высоты", эта фигура не представляет этап процесса. Используйте ее для добавления примечаний к фигурам блок-схемы.

    Ручной ввод. Это этап, на котором человек предоставляет информацию процессу.

    Ручная операция. Это этап, который должен быть выполнен человеком.

    Внутреннее хранилище. Эта фигура представляет данные, которые хранятся на компьютере.

    Прямые данные. Эта фигура представляет данные, которые хранятся таким образом, что к каждой отдельной записи возможен прямой доступ. Это соответствует способу хранения данных на жестком диске компьютера.

    Последовательные данные. Эта фигура представляет данные, которые сохраняются последовательно (например, данные на магнитной ленте). Считывать такие данные можно только последовательно. Например, чтобы обратиться к записи 7, нужно сначала просмотреть записи 1–6.

    Карта и бумажная лента. Эта фигура представляет перфокарту или бумажную ленту. В ранних компьютерных системах перфокарты и бумажные ленты использовались для записи и чтения данных, а также для хранения и запуска программ.

    Дисплей. Эта фигура представляет данные, отображаемые для пользователя (обычно на экране компьютера).

    Подготовка. Эта фигура обозначает инициализацию переменных при подготовке к выполнению процедуры.

    Параллельный режим. Эта фигура показывает, где два разных процесса могут работать одновременно.

    Предел цикла. На этой фигуре показано максимально возможное количество повторений цикла до перехода к следующему этапу.

    Передача управления. Эта фигура обозначает этап, на котором при выполнении некоторых условий происходит переход не к следующему, а к другому этапу.

Создание блок-схемы

    В меню Файл Создать , затем на пункт Блок-схема и выберите пункт Простая блок-схема .

    Для каждого этапа документируемого процесса перетащите в документ соответствующую фигуру блок-схемы.

    Соедините фигуры блок-схемы одним из указанных ниже способов.

    Соединение двух фигур друг с другом

    Соединение одной фигуры с несколькими с помощью одной точки соединения

    По умолчанию используются прямоугольные соединительные линии, и соединение точки на фигуре с тремя другими фигурами выглядит как на рисунке ниже.

    Чтобы соединительные линии исходили прямо из центральной точки первой фигуры и вели к точкам на всех других фигурах, необходимо задать Прямые соединительные линии , как показано на приведенном ниже рисунке.

    На панели инструментов Стандартная щелкните инструмент Указатель , чтобы вернуться в обычный режим правки.

    Чтобы добавить текст для фигуры или соединительной линии, выделите ее и введите текст. По завершении ввода текста щелкните в пустой области страницы.

    Чтобы изменить направление соединительной линии, в меню наведите указатель мыши на пункт Операции и выберите пункт Обратить концы .

Печать больших блок-схем

Наиболее простой способ вывести на печать блок-схему, размеры которой превышают размеры бумаги, - распечатать ее на нескольких листах, а затем склеить их.

Перед началом печати нужно убедиться в том, что отображаемая в Visio страница документа содержит блок-схему целиком. Все фигуры, которые выходят за пределы страницы в Visio, не будут напечатаны. Чтобы проверить, помещается ли блок-схема на страницу документа, используйте предварительный просмотр в диалоговом окне Параметры страницы (меню Файл , пункт Параметры страницы , вкладка Настройка печати ).

1. Блок-схема. размер которой слишком велик для страницы документа Visio.

2. Блок-схема, которая помещается на страницу документа Visio.

Изменение размера страницы документа Visio в соответствии с размером блок-схемы

    Когда открыта блок-схема, в меню Файл выберите пункт Параметры страницы .

    Откройте вкладку Размер страницы .

    На вкладке Размер страницы щелкните .

Чтобы увидеть, как блок-схема будет выглядеть на печати, в меню Файл выберите пункт Предварительный просмотр . На рисунке ниже показана блок-схема, которая будет распечатана на четырех листах формата Letter.

Печать больших блок-схем на нескольких листах бумаги

    В меню Файл выберите пункт Параметры страницы .

    На вкладке Настройка печати в поле Бумага в принтере выберите нужный размер бумаги, если он еще не задан. Не нажимайте кнопку ОК .

    Откройте вкладку Размер страницы и щелкните Изменять размеры по содержимому . В окне предварительного просмотра теперь видна разница между новой страницей и бумагой в принтере.

    Нажмите кнопку ОК .

    В меню Файл выберите пункт Предварительный просмотр , чтобы увидеть, как блок-схема будет выглядеть на печати.

    Примечание: Между страницами могут отображаться затененные поля. Они соответствуют тем областям, которые будут распечатаны на обоих листах. Это позволяет склеить листы таким образом, чтобы на блок-схеме не было пустых промежутков.

    После завершения печати можно обрезать поля, расположить страницы надлежащим образом и склеить их.